Protein characterization
Viruses are equally a threat to plants, bacteria, animals, and humans. They use their hosts to reproduce and can thereby damage them. This can lead, for example, to crop or farm animal losses and pandemics. On the other hand, viruses serve as tools for genetic engineering and the targeted modification of genomes.
Modern virology characterises viruses molecularly and functionally and uses this information to develop diagnostic tests, antiviral drugs and vaccines. Traditionally, virology largely relied on microscopic methods. Nowadays, microplate-based assays increase throughput and enable the measurement of replication, virus neutralization, binding of molecules to viral particles and much more.
Virus assays range from simple ELISA assays for measuring antibody titer to live-cell assays to measure replication. The variety of virus assays in combination with the need for cell-based methods requires a flexible microplate reader.
The CLARIOstar®Plus microplate reader offers this flexibility. It is a modular multi-mode reader that can be equipped with fluorescence, luminescence, absorbance and advanced detection modes. With its Atmospheric Control Unit, it is further optimized for live-cell assays as it creates the optimal environment for long-term cell-based experiments. The CLARIOstar Plus can be equipped with a red-shifted PMT for increased sensitivity with fluorophores emitting in the red range of light. These are often used in cell assays to avoid autofluorescence.
The PHERAstar FSX multi-mode microplate reader is the ideal platform for screening departments, where potential anti-viral compounds have to be detected quickly and efficiently in high throughput. In addition, it can quickly and effortlessly measure all FRET, TR-FRET and fluorescence polarization dual emission assays. These are often used in binding/interaction assays for anti-viral compound screens.
Resources
Browse our Resources section for information about specific applications, literature citations, videos, blog articles and many other publications. Many of the resources provided are associated with current and previous instrument models and versions.
- 347
Ubiquitination monitoring in real-time: the fluorescence polarization-based method UbiReal
Tyler G. Franklin , Jonathan N. Pruneda, Oregon Health & Science University, Dept. of Molecular Microbiology and Immunology, Portland, OR, USA, 05/2020 - 346
Elucidating PROTAC MoA with live cell kinetic monitoring of ternary complex formation and target protein ubiquitination
Kristin Riching , Amy Landreman , Danette Daniels, Promega, Madison, WI, U.S.A, 04/2020 - 337
Oxygen Dissociation Assay (ODA): spectrophotometric based screening platform for hemoglobin-O2 affinity modifiers
Mira P Patel (1) , Vincent Siu (1) , Abel Silva-Garcia (1) , Qing Xu (2) , Zhe Li (2) , Donna Oksenberg (1), (1) Biology Department , (2) Chemistry Department, Global Blood Therapeutics Inc., South San Francisco, CA, 06/2019 - 334
A pH determination method suitable for high-throughput approaches based on spectral absorbance
Andrew Witschi (1) , Carl Peters (2), (1) Hudson Robotics Inc., Springfield, NJ , (2) BMG LABTECH, Cary, NC , 04/2019 - 327
Ellman’s assay for in-solution quantification of sulfhydryl groups
Rucha Bhat , Gregory Grover, PhD, Contraline Inc., Charlottesville, VA, 11/2018
The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors
Read articlePhotodiagnosis Photodyn Ther
64Cu-DOTATATE Positron Emission Tomography (PET) of Borrelia Burgdorferi Infection: In Vivo Imaging of Macrophages in Experimental Model of Lyme Arthritis
Read articleDiagnostics (Basel)
Maternal Serum VEGF Predicts Abnormally Invasive Placenta Better than NT-proBNP: a Multicenter Case-Control Study
Read articleReprod Sci
Photoreactivity of Bis-retinoid A2E Complexed with a Model Protein in Selected Model Systems
Read articleCell Biochem. Biophys.
Photoacoustics resolves species-specific differences in hemoglobin concentration and oxygenation
Read articleJ Biomed Opt