Fluorescence polarization based assay for rapid, precise, high-throughput measurement of IgG & Fc containing derivatives

Dr. Carolanne Doherty
Valitacell, NIBRT, Fosters Avenue, Blackrock, Dublin, Ireland

- BMG LABTECH microplate readers enable measurement of novel IgG quantification method
- Valita™TITER assay uses fluorescence polarization to determine IgG directly in cell culture supernatant
- Preconfigured measurement protocols and analyses facilitate and accelerate quantitation

Introduction

The accurate, rapid and high-throughput measurement of IgG is essential in the development and manufacture of most therapeutic antibodies. Monoclonal antibodies are becoming increasingly dominant in biopharmaceuticals, where a vast number of samples must be screened for the development of each potential therapeutic. Here we present the Valita™TITER assay, a novel assay for the quantification of IgG in cell culture supernatant.

Current workflows, which include HPLC protein A, ELISA, protein A surface interferometry, and HTRF (homogenous time resolved fluorescence) have major drawbacks, which include costly, labour-intensive methods and long analysis times.

The Valita™TITER assay provides a very accurate and cost-effective solution to measure IgG in a range from 2.5-80mg/L. The Valita™TITER assay relies on the detection of IgG Fc interactions with Protein G by measurement of fluorescence polarization (Fig. 1). The assay comes in a 96-well format and is simple, high-throughput, rapid and fully automatable. Analysis can be carried out in cell culture media with a low sample volume and no complex preparation steps.

In this application note, we show the optimal protocol for performing IgG quantification using Valita™TITER assay kits obtained by the PHERAstar® and the CLARIOstar® plate readers.

Materials & Methods

- Valita™TITER Assay kit
- Valita™APP software (provided)
- IgG standard (IgG from Human Serum)
- PHERAstar, and CLARIOstar (BMG LABTECH)

Experimental procedure

Samples were prepared according to the respective product instruction for use. A standard curve was prepared using an IgG standard as per IFU. 60 μl of
ValitaMab reconstitution buffer was pipetted into each well of the Valita™TITER plate, along with 60 μl of prepared standards and samples. Contents were mixed and incubated in the dark for 30 minutes before being read on the PHERAstar, and CLARIOstar plate readers using preconfigured protocols in the BMG LABTECH software (detailed settings below). Data was then analysed using exported .csv files from the raw data, using the ValitaAPP software.

Results & Discussion

A standard curve (2.5–80 mg/l) was quantified with the Valita™TITER assay on three FP capable multi-mode readers by BMG LABTECH (CLARIOstar and PHERAstar). All readers showed low variation of replicate measurements (Fig. 3).

Finally, the Valita™TITER IgG quantification assay was compared to a conventional IgG quantitation by HPLC and used a range of differentially conditioned cell culture media samples. Figure 4 shows the correlation of both methods and reveals similar precisions for both quantification assays with Valita™TITER being much faster due its homogenous format with no need for complex sample preparation.

Instrument settings

<table>
<thead>
<tr>
<th></th>
<th>PHERAstar</th>
<th>CLARIOstar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optic settings</td>
<td>Fluorescence Polarization, endpoint</td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td>Ex: 482-16, 465 520 520, 520 520, 520 520</td>
<td></td>
</tr>
<tr>
<td>Focus and gain</td>
<td>70 mP target mP</td>
<td></td>
</tr>
<tr>
<td>General settings</td>
<td>200 flashes per well</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 s settling time</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3: Standard curve of IgG quantified with the Valita™TITER assay on the CLARIOstar microplate reader. Error bars show standard deviation of triplicates.

Fig. 4: Comparison of IgG quantification with Valita™TITER assay and by HPLC.

Conclusion

The ability to quickly determine IgG concentration from a mixed sample is of particular importance and value during the development and manufacture of these biopharmaceuticals. Here we report a novel, rapid, and simple fluorescence polarization-based assay for high-throughput titer measurement of IgG and FC-containing derivatives. The Valita™TITER assay allows the direct quantification of IgG from process samples without sample preparation or purification steps. The CLARIOstar and PHERAstar exhibit excellent assay quality when used with the Valita™TITER assay. By comparison with alternatives, Valita™TITER is a high-throughput, simple, precise method for quantification of IgG.

References